

5 July 2023

ENCOURAGING LITHIUM RESULTS EXPAND TARGETS AT MT ALEXANDER

HIGHLIGHTS

+120m thick pegmatite at Manta supports wider lithium potential:

- Assays for MAD213, which was drilled at the Manta Prospect on E29/638 (75% St George; 25% IGO) and intersected a wide zone with multiple pegmatites – including a continuous 120.8m interval – indicate local fractionation of the pegmatites that may represent the distal part of a zoned lithium-bearing system
- Major structures are interpreted to be associated with the thick flat-lying pegmatites hosted in granite, supporting the potential for the pegmatites to extend into a more favourable host in the greenstone belt, adjacent and intruded by the granite source
- The thick flat-lying pegmatite at Manta is modelled by seismic data as a strong, 1,000m diameter circular feature, with additional geophysics and drilling planned to test the wider potential for lithium bearing pegmatites around Manta

Extensive mineralised pegmatite field at Jailbreak, open along strike and at depth:

- Further assay results from the recent 2023 drilling programme at the Jailbreak Prospect confirm multiple lithium-bearing pegmatites with a peak value of 1.28% Li₂O
- Lithium-bearing pegmatites now identified by drilling across a 2km strike of the pegmatite corridor with a further 13km-long part of the corridor that hosts an extensive network of mapped pegmatites yet to be tested by drilling
- Drilling at Jailbreak has intersected multiple pegmatites that have potential to become thicker at depth, similar to results reported by other explorers in the region¹

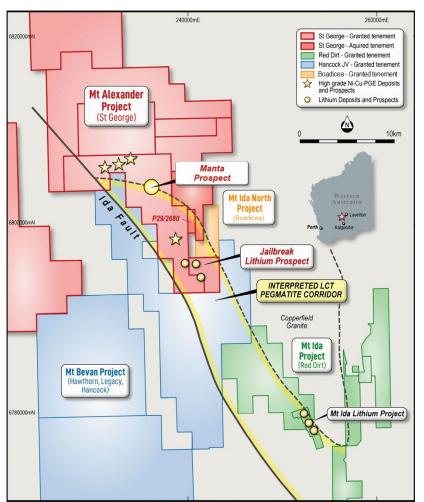
St George Mining Limited (ASX: **SGQ**) ("**St George**" or "**the Company**") is pleased to report further encouraging lithium exploration results at its Mt Alexander Project in Western Australia.

John Prineas, St George Mining's Executive Chairman said:

"Our understanding of the lithium prospectivity continues to grow at Mt Alexander with recent drill results confirming high-grade and anomalous lithium across a wide area.

"Most encouraging is the very thick 120.8m, flat-lying and locally fractionated zone of pegmatites intersected in hole MAD213 at the Manta Prospect, approximately 9km north of the Jailbreak Lithium Prospect.

"These types of pegmatites are what is required for large mineral deposits and we will continue to test for potential extensions of the Manta pegmatites within and below the adjacent greenstone belt.


¹ Delta Lithium Limited (ASX: DLI) – ASX Release dated 12 April 2023 Further Excellent Results from Mt Ida Drilling

"We have only just begun to realise the wider lithium potential at Mt Alexander with the latest drilling confirming the presence of major structures that can produce wide extensional openings for thick fractionated pegmatites to intrude.

"The results for MAD213 confirm that large-scale pegmatite intrusions have occurred and that they are showing signs of prospectivity for lithium. It is now down to identifying the more fractionated lithium-caesium-tantalum (LCT) zone within the pegmatite hosted mineral system.

"We are also encouraged by recent excellent results announced by Delta Lithium at its nearby Mt Ida Project and the confirmation by Hancock Prospecting² that it will proceed with a lithium exploration joint venture for Mt Bevan which has ground that wraps around our Mt Alexander tenure."

Figure 1 – regional map showing the location of Mt Alexander and other nearby lithium projects.

EARLY INDICATIONS OF LARGE-SCALE PEGMATITE INTRUSION MODEL

MAD213 intersected a 120.8m continuous interval of pegmatite which occurs within a 225m zone comprising multiple pegmatites (the **Manta pegmatite zone**); refer to St George ASX Release dated 29 March 2023 *120 Metre Pegmatite Intersection at Mt Alexander.*

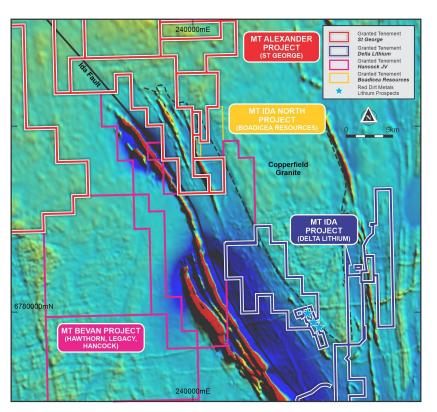
Assays from the pegmatites intersected in MAD213 have provided indications of a wide, multi-phase and locally fractionated pegmatite system which has potential to host lithium mineralisation where the pegmatites are intruded into more prospective host lithologies within the adjacent greenstone sequence at Mt Alexander.

² Legacy Iron Ore Limited (ASX: LCY) – ASX release dated 15 June 2023 Hancock Executes Lithium Earn-in and Joint Venture

The K:Rb (potassium to rubidium) ratio derived from the assays for MAD213 highlights the prospectivity of the Manta pegmatite zone. The ratio is an indicator of a fractionated pegmatite, where the pegmatite melt has evolved as it moves further form its source granite. A K:Rb ratio of less than 150 is a favourable indicator of fractionated pegmatites. The lower the K:Rb ratio, the more fractionated and prospective the pegmatites are interpreted to be.

A favourable K:Rb ratio associated with a Nb:Ta (niobium to tantalum) ratio of less than 5 is a further indication of fractionated pegmatites. A summary of the key geochemical results for MAD213 showing both ratios is included below in Table 1.

Values	Li ppm	Rb ppm	Cs ppm	Ta ppm	Sn ppm	Li20 ppm	Nb ppm	Nb:Ta	K:Rb
Max	95	550	5.8	6.8	49	200	62	1.5^	95^
Mean	14	285	2.8	2	5	30	17	9	117

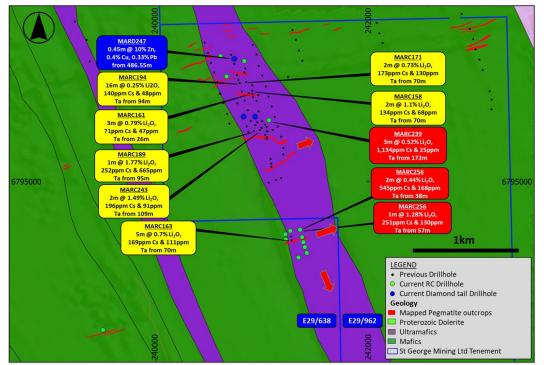

Table 1 – summary of assay results for pegmatites in MAD213 (^ denotes minimum value). The mean value is based on all 175 samples for MAD213 as reported in Table 4 below.

MAD213 was drilled to test a strong seismic reflector – the Manta Prospect – modelled as a circular feature with a diameter of approx. 1,000m – and now confirmed as being due to the pegmatites intersected within a granite intrusion in MAD213. The current interpretation of the reflector is constrained by the extent of the initial survey. Further geophysics and drilling are planned to identify the full extent of the Manta pegmatites and assist in defining where lithium fractionation may occur.

Seismic data also indicates the Manta pegmatites appear to have intruded along a relatively flat, regional-scale structure. Major structures can create wide extensional/dilational openings for pegmatites to intrude and enable fractionation to occur to form large volume lithium deposits. The exceptional thickness of the Manta pegmatites and the association with an interpreted regional-scale structure shows some important similarities with other major lithium deposits in Western Australia.

LCT pegmatites have already been intersected at Mt Alexander (see our ASX Release dated 29 May 2023 *Mt Alexander Exploration Update*), giving further support for the potential of the thick pegmatites intersected at Manta representing a distal part of a larger lithium mineral system.

Figure 2 – image of St George's tenements highlighting strongly magnetic units and major regional structures (including the craton scale Ida Fault) within the Mt Alexander greenstone belt and less magnetic granite bodies which have intruded the greenstone belt to the east, north and west. The granite intrusions are the interpreted source of the numerous pegmatites (against magnetic RTP 1VD).


MINERALISED PEGMATITES IDENTIFIED OVER A WIDE AREA AT JAILBREAK

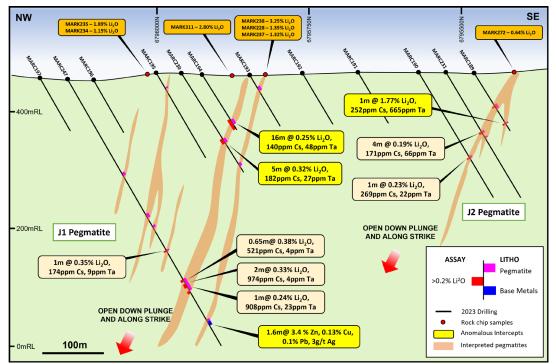
Further assay results have been received for the 2023 drill programme which continue to demonstrate the presence of lithium mineralised pegmatites that commence from or near surface and continue to depths of up to 300m below surface. High grades – up to 1.28% Li₂O – have been returned in the latest assays, highlighting the potential of the pegmatite system.

The latest assay results received are shown in Table 2. Together with the assay results reported in our ASX Release dated 29 May 2023 *Mt Alexander Exploration Update*, these include all the significant and anomalous assay results from the 2023 drilling completed to date. The results have continued to build our understanding of the geology and wider potential of the lithium-bearing pegmatite system.

Assays from Jailbreak have confirmed high-grade and other anomalous Li₂O results, many coincident with anomalous caesium, rubidium and locally tantalum and tin results.

The widespread presence of anomalous lithium at Jailbreak is indicative of this area being part of a fractionated pegmatite system with potential for stronger mineralisation along strike and down dip from current drilling. As other recent drilling in the region has shown³, thick mineralised parts of the system commonly occur at depths of +200m below surface. There is only very limited drilling at this depth so far at Mt Alexander.

Figure 3 – map of the Jailbreak Prospect showing the location of the latest results of the 2023 drilling.


The highest lithium values observed to date have been in the north-south trending ultramafic sequence – an area that lies within the 15km-long pegmatite corridor adjacent to the Copperfield Granite, the interpreted source of the mineralised pegmatites at the Mt Ida Project of Delta Lithium.

Only 2km of this 15km-long corridor within St George's tenements has been tested by drilling to date. The southern extension of the corridor, towards the Mt Bevan Project of the Hancock, Hawthorn and Legacy joint venture, continues for at least another 1.5km and will be a priority focus of further drilling.

³ Delta Lithium Limited (ASX: DLI) – ASX Release dated 12 April 2023 Further Excellent Results from Mt Ida Drilling.

In addition, the northern extension of the corridor – that includes the recently acquired 100% owned E29/1143 (the bulk of which lies some 6km to the north of Jailbreak) – will be tested by drilling for the first time. The extensive network of pegmatites mapped in these areas have yet to be drilled, highlighting the exploration upside of the area.

Figure 4 - cross section showing drill results and interpreted pegmatites at the Jailbreak Prospect.

BASE METALS INTERCEPTED AT JAILBREAK

Assays for MARD247, which was targeting the down-dip extension of the J1 pegmatite at Jailbreak, indicate that – in addition to lithium – high-grade zinc was intersected towards the end of that hole.

The stringer sulphide mineralisation was observed in quartz veining associated with extensive alteration halos within a wide zone of sheared mafic host rocks. Highlights include:

- 1.6m @ 3.4% Zn, 0.13% Cu, 0.1% Pb and 3.0 g/t Ag from 485.4m
 - o including 0.45m @ 10.6% Zn, 0.4% Cu, 0.33% Pb and 10.3g/t Ag from 486.55m

High-grade zinc mineralisation coupled with elevated copper, lead and silver is typical of certain base metal deposits including VMS-style deposits. No targeted exploration has ever occurred for this style of deposit at Mt Alexander. The occurrence of high-grade base metal mineralisation in MAD247 is significant from an exploration perspective and warrants further investigation of the source.

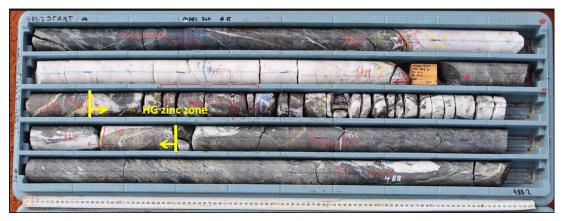


Figure 5 – MARD247 core tray highlighting the high-grade zinc mineralisation.

About the Mt Alexander Project:

The Mt Alexander Project is located 120km south-west of the Agnew-Wiluna Belt, which hosts numerous world-class nickel deposits. The Project comprises seven granted exploration licences – E29/638, E29/548, E29/962, E29/954, E29/972, E29/1041 and E29/1143 – which are a contiguous package. An additional two exploration licences – E29/1093 and E29/1126 – are located to the south-east of the core tenement package.

The Cathedrals, Stricklands, Investigators and Radar nickel-copper-cobalt-PGE discoveries are located on E29/638, which is held in joint venture by St George (75%) and IGO Limited (25%). St George is the Manager of the Project, with IGO retaining a 25% non-contributing interest (in E29/638 only) until there is a decision to mine. The Jailbreak Lithium Prospect is on E29/268 and E29/962. With the exception of E29/638, all Project tenements are owned 100% by St George.

Hole ID	Depth From	Depth To	Interval	Li20_pct	Cs_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm
MARC239A	118	119	1	0.36	563	37	1918	38	94
MARC239A	172	175	3	0.52	1134	9	6334	26	25
MARC239A	248	250	2	0.36	619	15.5	6649	31	25
MARC256	38	40	2	0.44	545	61.5	4108	40	168
MARC256	57	59	2	0.82	161	60	4455	51.5	99.5
	Including (57m-58m)	1	1.28	251	65	6869	69	130
MARD245	77	78	1	0.21	319	13	2496	22	34
MARD245	80	81	1	0.29	43	47	2738	48	137
MARD247	337.2	338	0.8	0.35	174	17	2749	31	9
MARD247	419.7	420.35	0.65	0.38	521	10	5979	25	4
MARD247	427	429	2	0.33	974	9.5	4609	135	4
MARD247	441	442	1	0.24	908	8	3761	19	23

Table 2: Anomalous intercepts in the latest assays results from lithium drilling (>0.2% Li2O).

Table 3: List of 2023 drillholes details pertaining to this report. All holes are in GDA94 -MGA Zone 51.

Hole ID	Prospect	Tenement	East	North	RL	Depth	Azi	Dip	Drilltype
MARC239A	Jailbreak	E29/962	241071	6795575	462	250	168	-60	RC
MARC246	Jailbreak	E29/962	240839	6796130	460	250	163	-60	RC
MARC247	Jailbreak	E29/962	240747	6796150	462	250	163	-60	RC
MARC248	Jailbreak	E29/962	240616	6796176	467	250	163	-60	RC
MARC249	Jailbreak	E29/962	240674	6795985	465	160	163	-60	RC
MARC250	Jailbreak	E29/638	241454	6784240	461	100	163	-60	RC
MARC251	Jailbreak	E29/638	241348	6794288	455	100	163	-60	RC
MARC252	Jailbreak	E29/638	241425	6794331	460	100	163	-60	RC
MARC253	Jailbreak	E29/638	241408	6794385	454	106	163	-60	RC
MARC254	Jailbreak	E29/638	241394	6794432	459	100	163	-60	RC
MARC255	Jailbreak	E29/638	241381	6794479	459	100	163	-60	RC
MARC256	Jailbreak	E29/638	241362	6794548	459	100	163	-60	RC
MARC257	Jailbreak	E29/638	241229	6794457	459	46	172	-60	RC
MARC258	Jailbreak	E29/638	241225	6794506	462	100	172	-60	RC
MARC259	Jailbreak	E29/638	241271	6794538	461	142	163	-60	RC
MARC260	Jailbreak	E29/638	239516	6793609	490	58	163	-60	RC
MAD213	Manta	E29/638	236189	6804617	424	799.2	252	-68	DD
MARD236A	Manta	E29/638	236548	6803435	442	472.2	247	-60	DD

MARD242	Jailbreak	E29/962	240834	6795609	473	395.9	163	-60	DD
MARD245	Jailbreak	E29/962	240941	6795609	467	400	163	-60	DD
MARD247	Jailbreak	E29/962	240747	6796150	462	525.2	163	-60	DD

Table 4: Assays results and sample intervals for all pegmatites sampled from MAD213. Note: (1) the favourable K:Rb and N:Ta ratios are highlighted in Table 4; and (2) the 120.8m continuous interval of pegmatite extends from 631.2m to 752.0m downhole (refer to St George's ASX Release dated 29 March 2023 which includes photos of drill core with peamatites from MAD213).

HOLEID	From	То	Li	Rb	Cs	Та	К	Nb	K:Rb	Nb:Ta
MAD213	592.3	592.8	94	280.3	4	2.5	31,900	19	114	8
MAD213	592.8	593.5	20	282.1	3.1	2.6	34,700	8	123	3
MAD213	593.5	594.1	14	322	3.5	2.4	41,400	10	129	4
MAD213	594.1	594.6	95	276	3.3	2.2	33,800	12	122	5
MAD213	594.6	595.5	63	332.8	4.2	2.4	37,900	20	114	8
MAD213	595.5	596.5	<10	509	4	1.4	56,100	6	110	4
MAD213	596.5	597.5	<10	379.2	3.1	2.3	43,100	15	114	7
MAD213	597.5	598.5	20	294.9	3.3	2.4	31,200	23	106	10
MAD213	598.5	599.5	<10	386.3	5.4	1.5	37,400	11	97	7
MAD213	599.5	600.5	<10	261	4	5.2	26,200	49	100	9
MAD213	600.5	601.5	11	389.1	4.9	4.3	39,200	55	101	13
MAD213	601.5	601.9	<10	472.5	4.8	2.8	48,400	35	102	13
MAD213	601.9	602.4	89	345.4	3.9	2.3	37,800	21	109	9
MAD213	611	611.5	68	341.8	3.8	2.5	36,400	21	106	8
MAD213	611.5	612.5	<10	436.2	4.4	1	48,200	10	110	10
MAD213	612.5	613.5	<10	201.4	4.4	2	23,900	23	119	12
MAD213	613.5	614.5	10	217.5	3.6	2.4	22,400	34	103	14
MAD213	614.5	615.5	<10	314	3.8	3.5	31,600	50	101	14
MAD213	615.5	616.5	10	395.3	4	3.9	41,500	57	105	15
MAD213	616.5	617.5	<10	325.2	3.6	3.7	35,700	56	110	15
MAD213	617.5	618.5	10	206	3.8	4	25,100	62	122	16
MAD213	618.5	619.5	<10	482.6	4.2	2.8	50,300	40	104	14
MAD213	619.5	620.5	<10	366.9	4.8	2.7	37,900	37	103	14
MAD213	620.5	621.3	<10	302.5	4.7	5.7	32,100	60	106	11
MAD213	621.3	622	10	549.8	5.3	2.5	56,100	22	102	9
MAD213	622	623	<10	493.4	5.8	2.8	48,600	40	99	14
MAD213	623	624	<10	311.6	2.9	2.5	32,800	36	105	14
MAD213	624	624.5	63	331.9	2.9	2.1	32,600	20	98	10
MAD213	630.5	631.2	19	324.5	3.2	1.3	32,400	23	100	18
MAD213	631.2	632	21	339.2	5	2.9	33,900	35	100	12
MAD213	632	632.6	<10	267.3	2.7	1.5	29,600	14	111	9
MAD213	632.6	633.5	<10	328	3.1	1.7	39,100	8	119	5
MAD213	633.5	634.5	<10	209.7	2.1	1.7	27,200	6	130	4
MAD213	634.5	635	<10	299.9	2.2	2.5	35,500	11	118	4
MAD213	635	635.9	<10	353.6	3.1	1.8	42,800	13	121	7
MAD213	635.9	637	<10	367.6	3	2.7	40,700	40	111	15
MAD213	637	638	<10	321.4	2.3	1.9	35,600	19	111	10

·		1	1							
MAD213	638	639	<10	264.1	2.3	1.6	30,300	19	115	12
MAD213	639	640	<10	259.2	2.1	2.1	29,200	29	113	14
MAD213	640	641	<10	279.5	2.4	2.4	29,800	30	107	13
MAD213	641	642	<10	207.8	1.9	1	24,900	12	120	12
MAD213	642	643	10	324.3	4.2	0.7	37,900	10	117	14
MAD213	643	644	10	257.7	2.1	1.1	30,800	17	120	15
MAD213	644	645	11	142	1.5	1.4	18,800	17	132	12
MAD213	645	646	<10	289.1	2.5	2.5	33,500	21	116	8
MAD213	646	647	<10	307.1	2.3	2.3	37,300	21	121	9
MAD213	647	648	<10	279.3	2.2	1.2	33,600	14	120	12
MAD213	648	649	<10	390.3	2.6	1.3	47,900	13	123	10
MAD213	649	650	14	427.5	2.7	6.6	51,100	10	120	2
MAD213	650	651	12	236.3	1.9	2.7	29,300	8	124	3
MAD213	651	652	12	166.2	1	2.6	21,900	13	132	5
MAD213	652	653	<10	320.7	2.1	2.9	39,400	19	123	7
MAD213	653	654	13	263.8	1.9	2.3	34,200	12	130	5
MAD213	654	655	13	157.3	1.5	3.4	16,900	18	107	5
MAD213	655	656	14	185.3	1.6	2.9	22,800	15	123	5
MAD213	656	657	34	345.6	2.8	2.5	39,300	15	114	6
MAD213	657	658	17	314.6	2.1	2.9	35,600	23	113	8
MAD213	658	659	14	250.6	2	2	29,700	18	119	9
MAD213	659	660	16	213.1	2.3	3.5	24,200	31	114	9
MAD213	660	661	10	325.3	2.8	3.3	36,700	34	113	10
MAD213	661	662	20	214.2	1.6	1.1	25,500	10	119	9
MAD213	662	663	16	247.3	2.1	1.1	28,100	8	114	7
MAD213	663	664	14	423.8	3.2	0.8	47,900	8	113	10
MAD213	664	665	12	180.2	1.9	1.4	20,700	13	115	9
MAD213	665	666	<10	125.8	2.2	1.5	14,700	13	117	9
MAD213	666	667	15	356.7	3.2	1.1	38,500	11	108	10
MAD213	667	668	11	322.3	2.6	0.9	37,000	12	115	13
MAD213	668	669	15	351.5	2.6	1	41,800	9	119	9
MAD213	669	670	12	385.7	3.1	1.2	43,000	10	111	8
MAD213	670	671	<10	231.6	2.1	1.3	28,300	12	122	9
MAD213	671	671.9	20	232.7	2.1	1	30,700	8	132	8
MAD213	671.9	672.8	94	223.6	1.7	2.9	55,800	61	250	21
MAD213	672.8	673.4	<10	277.6	2	0.5	35,200	6	127	12
MAD213	673.4	674	11	397.1	3.1	0.6	49,400	5	124	8
MAD213	674	675	11	357.1	2.5	0.5	41,700	5	117	10
MAD213	675	676	16	419.2	3	1.6	48,100	19	115	12
MAD213	676	677	14	142.3	1.6	1.3	17,000	13	119	10
MAD213	677	678	16	312.4	3.7	4.8	35,100	35	112	7
MAD213	678	679	17	229.2	2.1	1.5	28,400	10	124	7
MAD213	679	680	19	170.7	2.2	1.1	20,900	10	122	9
MAD213	680	681	15	299.6	3.3	1.7	36,200	19	121	11
MAD213	681	682	25	334.9	2.4	1.3	38,300	8	114	6

·		1			1					
MAD213	682	683	17	250.9	2.2	1.9	29,200	21	116	11
MAD213	683	684	14	257.6	2.7	2.2	29,500	27	115	12
MAD213	684	685	12	247.2	3.2	3.1	27,800	36	112	12
MAD213	685	686	<10	156.8	1.7	1	18,000	13	115	13
MAD213	686	687	13	250.6	2.4	0.7	29,900	7	119	10
MAD213	687	688	13	246.2	1.9	1	29,900	9	121	9
MAD213	688	689	14	388.9	3.1	0.8	44,200	6	114	8
MAD213	689	690	14	498.4	3	0.7	56,400	6	113	9
MAD213	690	691	11	158.8	1.8	1.4	20,000	13	126	9
MAD213	691	692	11	212.5	2	1.1	25,000	11	118	10
MAD213	692	693	12	364.6	2.8	1.2	42,200	15	116	13
MAD213	693	694	10	351.5	2.5	0.6	39,400	8	112	13
MAD213	694	695	13	280.6	2.8	1.3	34,100	16	122	12
MAD213	695	696	14	345.8	2.2	2.5	42,500	20	123	8
MAD213	696	697	18	338.5	2.7	5.5	39,500	12	117	2
MAD213	697	698	<10	222.6	3.2	2.8	26,200	21	118	8
MAD213	698	699	<10	249.8	2.4	1.5	31,200	13	125	9
MAD213	699	700	17	392.4	3.1	1.3	44,500	10	113	8
MAD213	700	701	14	136.5	2.1	2.1	17,600	22	129	10
MAD213	701	702	11	305.6	2.7	1.3	36,200	13	118	10
MAD213	702	703	15	286.5	2.2	1.2	34,000	8	119	7
MAD213	703	703.8	13	109.6	1.1	1.2	14,100	8	129	7
MAD213	703.8	705	13	99.1	1.2	1.1	14,000	8	141	7
MAD213	705	706	<10	144.8	1.3	1.1	17,800	10	123	9
MAD213	706	707	15	254	2.2	3.7	27,100	8	107	2
MAD213	707	708	15	206	3.1	4.4	23,800	22	116	5
MAD213	708	709	26	131.1	1.6	3.4	15,900	27	121	8
MAD213	709	710	14	284.6	2.3	1.6	35,000	9	123	6
MAD213	710	711	12	295.2	2.5	1.4	34,300	9	116	6
MAD213	711	712	12	128	1.7	1.1	15,900	7	124	6
MAD213	712	713	14	215.7	2.4	1.5	25,900	11	120	7
MAD213	713	714	12	198.4	2.3	2.7	23,200	22	117	8
MAD213	714	715	11	94.9	1.9	2.2	13,200	15	139	7
MAD213	715	716	11	265.3	2.6	1.9	32,400	14	122	7
MAD213	716	717	12	376	3.4	1.3	44,200	11	118	8
MAD213	717	718	12	446.9	3.6	0.7	53,100	5	119	7
MAD213	718	719	23	242.4	2.2	1.3	27,600	11	114	8
MAD213	719	720	20	327.8	2.7	0.9	37,000	6	113	7
MAD213	720	721	16	275.2	3.2	1	29,800	6	108	6
MAD213	721	722	15	449.6	4.3	1.5	49,900	12	111	8
MAD213	722	723	12	328.8	3.6	2.7	38,800	17	118	6
MAD213	723	724	11	221.1	2	0.7	25,800	5	117	7
MAD213	724	725	15	275.5	5.5	1.1	30,700	9	111	8
MAD213	725	726	17	311.3	3.4	0.6	33,900	5	109	8
MAD213	726	727	19	278.4	3.5	0.9	30,500	7	110	8

i		1								
MAD213	727	728	16	434.8	3.1	0.6	49,300	5	113	8
MAD213	728	729	18	220.1	3.7	2.1	24,500	21	111	10
MAD213	729	730	17	369.8	5.4	2.9	41,300	26	112	9
MAD213	730	731	18	215.6	4	0.7	24,100	6	112	9
MAD213	731	732	14	303.6	3.5	0.6	33,700	5	111	8
MAD213	732	733	18	280.7	3.8	5.1	30,600	28	109	5
MAD213	733	734	20	331.2	4	1.1	38,600	8	117	7
MAD213	734	735	20	296.9	3.7	1.5	34,300	20	116	13
MAD213	735	736	14	330	2.9	3.6	39,500	35	120	10
MAD213	736	737	17	197.1	1.9	1	24,500	12	124	12
MAD213	737	738	20	198.6	2.3	0.8	23,500	11	118	14
MAD213	738	739	17	204.9	2.6	0.9	24,300	9	119	10
MAD213	739	740	20	264.2	3.8	1.5	29,200	14	111	9
MAD213	740	741	18	343	3.5	0.5	41,700	6	122	12
MAD213	741	742	16	301.7	3.2	1.1	36,000	11	119	10
MAD213	742	743	12	195.9	2.3	2.3	24,500	21	125	9
MAD213	743	744	16	327.4	3.5	1.8	38,600	12	118	7
MAD213	744	745	19	252.7	2.5	6.8	29,600	17	117	3
MAD213	745	746	24	142.6	1.9	3	17,200	12	121	4
MAD213	746	747	14	172.8	2.8	1.9	19,900	8	115	4
MAD213	747	748	16	180.5	3.3	3	21,200	20	117	7
MAD213	748	749	17	138	2.6	1.7	16,800	10	122	6
MAD213	749	750	18	296.6	3.4	1.4	35,000	10	118	7
MAD213	750	751	13	225.8	2.5	1.2	27,000	10	120	8
MAD213	751	752	18	194.6	2.3	1.1	24,500	9	126	8
MAD213	752	753	86	274.3	2.5	2.1	33,500	31	122	15
MAD213	753	754	12	233.9	2.2	0.9	28,900	7	124	8
MAD213	754	755	12	238.9	2.2	1.2	30,700	10	129	8
MAD213	755	756	<10	266.5	2.4	1	33,100	8	124	8
MAD213	756	757	10	228.3	1.9	0.9	28,500	8	125	9
MAD213	757	758	12	232.4	2.6	5.3	25,900	49	111	9
MAD213	758	759	70	291.3	2.7	2.4	34,300	21	118	9
MAD213	759	760	78	274.8	2.3	2.4	29,700	16	108	7
MAD213	765	766	81	269.6	2.4	1.9	30,800	21	114	11
MAD213	766	766.5	89	261.7	3.2	1.7	28,300	21	108	12
MAD213	766.5	767	<10	327.1	2.4	0.8	42,600	10	130	13
MAD213	767	768	<10	353.6	2.7	1	43,100	10	122	10
MAD213	768	769	<10	166.3	1.4	0.9	21,800	9	131	10
MAD213	769	770	<10	225.1	2	0.9	26,500	10	118	11
MAD213	770	770.9	<10	351.4	2.5	1.3	44,600	11	127	8
MAD213	770.9	771.4	64	224	1.6	0.7	28,500	12	127	17
MAD213	771.4	772	10	240	1.7	0.4	31,600	6	132	15
MAD213	772	773	11	365	2.4	0.4	47,700	5	131	13
MAD213	773	774	12	328.8	2.5	0.8	40,200	10	122	13
MAD213	774	775	12	355	2.5	0.3	45,100	4	127	13

MAD213	775	776	11	383.3	2.7	0.5	49,900	4	130	8
MAD213	776	777	11	393.6	2.6	0.8	51,600	7	131	9
MAD213	777	778	79	261.2	2	1.4	31,900	17	122	12

Authorised for release by the Board of St George Mining Limited.

For further information, please contact: John Prineas Executive Chairman St George Mining Limited +61 411 421 253 john.prineas@stgm.com.au

Peter Klinger

Media and Investor Relations Cannings Purple +61 411 251 540 <u>pklinger@canningspurple.com.au</u>

Competent Person Statement:

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves for the Mt Alexander Project is based on information compiled by Mr Dave Mahon, a Competent Person who is a Member of The Australasian Institute of Geoscientists. Mr Mahon is employed by St George Mining Limited to provide technical advice on mineral projects, and he holds performance rights issued by the Company.

Mr Mahon has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mahon consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements:

This announcement includes forward-looking statements that are only predictions and are subject to known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of St George, the directors and the Company's management. Such forward-looking statements are not guarantees of future performance.

Examples of forward-looking statements used in this announcement include use of the words 'may', 'could', 'believes', 'estimates', 'targets', 'expects', or 'intends' and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of announcement, are expected to take place.

Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements in the announcement as they speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, St George does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

This announcement has been prepared by St George Mining Limited. The document contains background Information about St George Mining Limited current at the date of this announcement.

The announcement is in summary form and does not purport to be all inclusive or complete. Recipients should not rely upon it as advice for investment purposes, as it does not take into account your investment objectives, financial position or needs. These factors should be considered, with or without professional advice, when deciding if an investment is appropriate.

The announcement is for information purposes only. Neither this announcement nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares

in any jurisdiction. The announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply to their own jurisdiction as a failure to do so may result in a violation of securities laws in such jurisdiction.

This announcement does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this announcement are not intended to represent recommendations of particular investments to particular persons.

Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the extent permitted by law, no responsibility for any loss arising in any way (including by way of negligence) from anyone acting or refraining from acting as a result of this material is accepted by St George Mining Limited (including any of its related bodies corporate), its officers, employees, agents and advisers.

The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	RC Sampling: All samples from the RC drilling are taken as 1m samples split using a cone splitter and collected in a calico bag for laboratory assay. Diamond Core Sampling: The sections of the core that are selected for assaying are marked up and then recorded on a sample sheet for cutting and sampling at the certified assay laboratory. Samples of HQ or NQ2 core are cut just to the right of the orientation line where available using a diamond core saw, with half core sampled lengthways for assay.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	<i>RC Sampling:</i> Samples are taken on a one metre basis and collected using uniquely numbered calico bags. The remaining material for that metre is collected and stored in a green plastic bag marked with that specific metre interval. The cyclone is cleaned with compressed air after each plastic and calico sample bag is removed. If wet sample or clays are encountered then the cyclone is opened and cleaned manually and with the aid of a compressed air gun. A blank sample is inserted at the beginning of each hole, and a duplicate sample is taken every 50 th sample. A certified sample standard is also added according to geology, but at no more than 1:50 samples.
		Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys of dip and azimuth are conducted using a single shot camera every 30m, and using a downhole Gyro when required, to detect deviations of the hole from the planned dip and azimuth. The drill-hole collar locations are recorded using a hand-held GPS, which has an accuracy of +/- 5m. All drill-hole collars will be surveyed to a greater degree of accuracy using a certified surveyor at a later date.
		<i>Diamond Core Sampling:</i> For diamond core samples, certified sample standards were added as every 50 th sample. Core recovery calculations are made through a reconciliation of the actual core and the driller's records. Downhole surveys of dip and azimuth were conducted using a single shot camera every 30m to detect deviations of the hole from the planned dip and azimuth. The drill-hole collar locations are recorded using a hand-held GPS, which has an accuracy of +/- 5m.

Criteria	JORC Code explanation	Commentary
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg	<i>RC Sampling:</i> A 1m composite sample is taken from the bulk sample of RC chips that may weigh in excess of 40 kg. Each sample collected for assay typically weighs 2-3kg, and once dried, is prepared for the laboratory as per the Diamond samples below.
	'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or	Diamond Core Sampling: Diamond core (both HQ and NQ2) is half- core sampled to geological boundaries no more than 1.5m and no less than 10cm. Samples less than 3kg are crushed to 10mm, dried and then pulverised to 75 μ m. Samples greater than 3kg are first crushed to 10mm then finely crushed to 3mm and input into the rotary splitters to produce a consistent output weight for pulverisation.
	mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Elements for all Lithium targeted sample mediums are analysed using a peroxide fusion digest and an ICP finish. These elements are: Li, Al, As, B, Ba, Be, Ca, Cs, Fe, Hf, Ga, K, Mg, Mn, Nb, P, Rb, S, Si, Sn, Sr, Ta, W, and Zr. The sample is digested with, hydrochloric, acid to effect a total dissolution of the sample. The sample is then analysed using ICP- AES or ICP-MS.
		Elements for all base metals suites go through the following two analytical methods:
		Pulverisation produces a 40g charge for fire assay. Elements determined from fire assay are gold (Au), platinum (Pt) and palladium (Pd) with a 1ppb detection limit. To determine other PGE concentrations (Rh, Ru, Os, Ir) a 25g charge for nickel sulphide collect fire assay is used with a 1ppb detection limit.
		Other elements will be analysed using an acid digest and an ICP finish. These elements are: Ag, Al, As, Bi, Ca, Cd, Co, Cr, Fe, K, Li, Mg, Mn, Mo, Nb, Ni, P, Pb, S, Sb, Sn, Te, Ti, V, W, Zn. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The sample is then analysed using ICP-AES or ICP-MS.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is	<i>Diamond Core Sampling:</i> The collars of the diamond holes were drilled using RC drilling down through the regolith to the point of refusal or to a level considered geologically significant to change to core. The hole was then continued using HQ diamond core until the drillers determined that a change to NQ2 coring was required.
	oriented and if so, by what method, etc).	The core is oriented and marked by the drillers. The core is oriented using ACT Mk II electric core orientation.
		<i>RC Sampling:</i> The RC drilling uses a 140 mm diameter face hammer tool. High capacity air compressors on the drill rig are used to ensure a continuously sealed and high-pressure system during drilling to maximise the recovery of the drill cuttings, and to ensure chips remain dry to the maximum extent possible.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	<i>RC Sampling:</i> RC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative RC chips stored in chip trays.
		<i>Diamond Core Sampling:</i> Diamond core recoveries are recorded during drilling and reconciled during the core processing and geological logging. The core length recovered is measured for each run and recorded which is used to calculate core recovery as a percentage.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	<i>RC Sampling:</i> Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.

Criteria	JORC Code explanation	Commentary
		Diamond Core Sampling: Measures taken to maximise core recovery include using appropriate core diameter and shorter barrel length through the weathered zone, Primary locations for core loss in fresh rock are on geological contacts and structural zones, and drill techniques are adjusted accordingly, and if possible, these zones are predicted from the geological modelling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	Each sample is recorded for the lithology, type and nature of the soil. The surface topography and type is recorded at the sample location.
	metallurgical studies.	Logging of samples records lithology, mineralogy, mineralisation, structures (core only), weathering, colour and other noticeable features. Chips and core was photographed in both dry and wet form.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	All drill holes are geologically logged in full and detailed litho- geochemical information is collected by the field XRF unit. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	<i>Diamond Core Sampling:</i> Diamond core was drilled with HQ and NQ2 size and sampled as complete half core to produce a bulk sample for analysis. Intervals selected varied from 0.3 – 1m (maximum) The HQ and NQ2 core is cut in half length ways just to the right of the orientation line where available using a diamond core saw. All samples are collected from the same side of the core where practicable.
		Assay preparation procedures ensure the entire sample is pulverised to 75 microns before the sub-sample is taken. This removes the potential for the significant sub-sampling bias that can be introduced at this stage.
	lf non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples are collected in dry form. Samples are collected using cone or riffle splitter when available. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.
	For all sample types, the nature, quality and appropriateness of the sample preparation	<i>RC Sampling</i> : Sample preparation for RC chips follows a standard protocol.
	technique.	The entire sample is pulverised to 75µm using LM5 pulverising mills. Samples are dried, crushed and pulverized to produce a homogenous representative sub-sample for analysis. A grind quality target of 90% passing 75µm is used.

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks with each sample batch. QAQC results are routinely reviewed to identify and resolve any issues.
		<i>RC Sampling:</i> Field QC procedures maximise representivity of RC samples and involve the use of certified reference material as assay standards, along with blanks, duplicates and barren washes.
		<i>Diamond Core Sampling:</i> Drill core is cut in half lengthways and the total half-core submitted as the sample. This meets industry standards where 50% of the total sample taken from the diamond core is submitted.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate samples are selected during sampling. Samples comprise two quarter core samples for Diamond Core. Duplicate RC samples are captured using two separate sampling apertures on the splitter.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent base metal sulphide mineralisation and associated geology based on: the style of mineralisation (massive and disseminated sulphides), the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld XRF instrument (Olympus Innov-X Spectrum Analyser) is used to provide an initial assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (usually daily).
		The handheld XRF results are only used for preliminary assessment and not for reporting of element compositions, prior to the receipt of assay results from the certified laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. The Company also submits a suite of CRMs, blanks and selects appropriate samples for duplicates.
		Sample preparation checks for fineness are performed by the laboratory to ensure the grind size of 90% passing 75 μ m is being attained.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Field Geologist.
	The use of twinned holes.	No twinned holes have been planned for the current drill programme.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised

Criteria	JORC Code explanation	Commentary
		factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The sample locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 51.
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS surveying at specific location across the project, including drill collars, and entered into the central database. A topographic surface has been created using this elevation data.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The spacing and distribution of holes is not relevant to the drilling programs which are at the exploration stage rather than definition drilling.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The completed drilling at the Project is not sufficient to establish the degree of geological and grade continuity to support the definition of Mineral Resource and Reserves and the classifications applied under the 2012 JORC code.
	Whether sample compositing has been applied.	No compositing has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill holes are drilled to intersect the modelled mineralised zones at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.

Section 2 Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant)

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Status	Type, name/reference number, location and ownership including agreements or material issues with third parties including joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mt Alexander Project is comprised of six granted Exploration Licences (E29/638, E29/548, E29/954, E29/962, E29/972 and E29/1041). Tenement E29/638 is held in Joint Venture between St George (75% interest) and IGO (25% interest). E29/638 and E29/548 are also subject to a royalty in favour of a third party that is outlined in the ASX Release dated 17 December 2015 (as regards E29/638) and the ASX release dated 18 September 2015 (as regards E29/548).
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No environmentally sensitive sites have been identified on the tenements. A registered Heritage site known as Willsmore 1 (DAA identification 3087) straddles tenements E29/548 and E29/638. All five tenements are in good standing with no known impediments.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Exploration on tenements E29/638 and E29/962 has been largely for komatiite-hosted nickel sulphides and pegmatite hosted Lithium in the Mt Alexander Greenstone Belt. Exploration in the northern section of E29/638 (Cathedrals Belt) and also limited exploration on E29/548 has been for komatiite-hosted Ni-Cu sulphides in granite terrane. No historic exploration has been identified on E29/954 or E29/972.
		Mafic-Ultramafic intrusion related high grade nickel-copper-PGE sulphides were discovered at the Mt Alexander Project in 2008. Drilling was completed to test co-incident electromagnetic (EM) and magnetic anomalies associated with nickel-PGE enriched gossans in the northern section of current tenement E29/638. The drilling identified high grade nickel-copper mineralisation in granite-hosted and East-West orientated ultramafic units and the discovery was named the Cathedrals Prospect.
Geology	Deposit type, geological setting and style of mineralisation	The Mt Alexander Project is at the northern end of a western bifurcation of the Mt Ida Greenstones. The greenstones are bound to the west by the interpreted Ida Fault, a significant Craton-scale structure that marks the boundary between the Kalgoorlie Terrane (and Eastern Goldfields Superterrane) to the east and the Youanmi Terrane to the west.
		The Mt Alexander Project is prospective for further high-grade nickel- mineralisation (both komatiite and mafic-ultramafic intrusive hosted) and also precious metal mineralisation (i.e. orogenic gold) that is typified elsewhere in the Yilgarn Craton.
		MT Alexander is also prospective for pegmatite hosted Lithium mineralisaion. The Mt Ida region is a growing Lithium district within the Northern Goldfields area.
Drill hole information	A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes: • Easting and northing of the drill hole collar •Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • Dip and azimuth of the hole • Down hole length and interception depth • Hole length	Drill hole collar locations are shown in the maps and tables included in the body of the relevant ASX releases.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods.
	Where aggregated intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Any high-grade sulphide intervals internal to broader zones of mineralisation are reported as included intervals.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of exploration results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect.	Assay intersections are reported as down hole lengths. Drill holes are planned as perpendicular as possible to intersect the target EM plates and geological targets so downhole lengths are usually interpreted to be near true width.
iagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plane view of drill hole collar locations and appropriate sectional views.	A prospect location map, cross section and long section are shown in the body of relevant ASX Releases.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practical, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at <u>www.stgm.com.au</u> : The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material or meaningful data collected has been reported.
Further Work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large – scale step – out drilling).Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.