

DISCLAIMER

Certain oral and written statements contained or incorporated by reference in this presentation, including information as to the future financial or operating performance of the Company and its projects, constitute forward-looking statements. All statement, other than statements of historical fact, are forward-looking statements. The words "believe", "expect", "anticipate", "contemplate", "target", "plan", "intend", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

Forward-looking statements include, among other things, statements regarding targets, estimates and assumptions in respect of nickel, gold or other metal production and prices, operating costs and results, capital expenditures, mineral reserves and mineral resources and anticipated grades and recovery rates. Forward-looking statements are necessarily based upon a number of estimates and assumptions related to future business, economic, market, political, social and other conditions that, while considered reasonable by the Company, are inherently subject to significant uncertainties and contingencies. Many known and unknown factors could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such factors include, but are not limited to: competition; mineral prices; ability to meet additional funding requirements; exploration, development and operating risks; uninsurable risks; uncertainties inherent in ore reserve and resource estimates; dependence on third party smelting facilities; environmental regulation and liability; currency risks; effects of inflation on results of operations; factors relating to title to properties; native title and aboriginal heritage issues; dependence on key personnel; and share price volatility and also include unanticipated and unusual events, many of which are beyond the Company's ability to control or predict.

The Company disclaims any intent or obligation to update any forward-looking statements, whether as a result of new information, future events or results or otherwise. All forward-looking statement made in this presentation are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and, accordingly, not to put undue reliance on such statements.

Independence Group NL

ABN 46 092 786 304

FINANCIAL SUMMARY

Capital Structure: ASX 200 Code : IGO

232.9M shares

Financials: Market Cap. (11/2/13): A\$1,148.1M

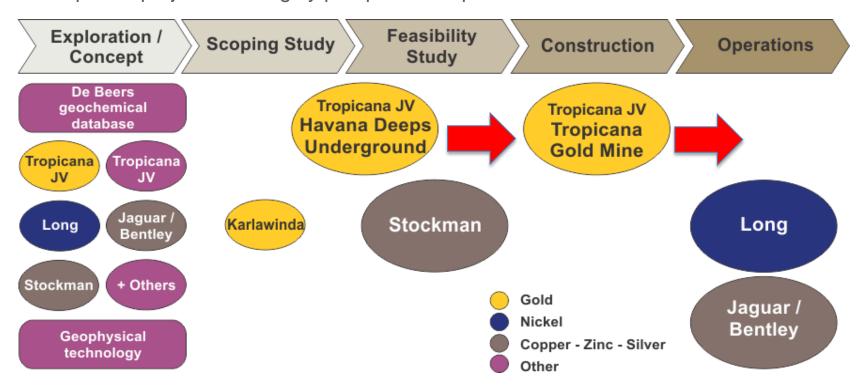
Cash (end Dec Qtr 2012): A\$102.9M Debt (end Dec Qtr 2012): (A\$16.2M)

Unaudited H1 NPAT: A\$16.3M

Substantial shareholders: 65 Institutions in Top 100

67% Australian 10% Overseas

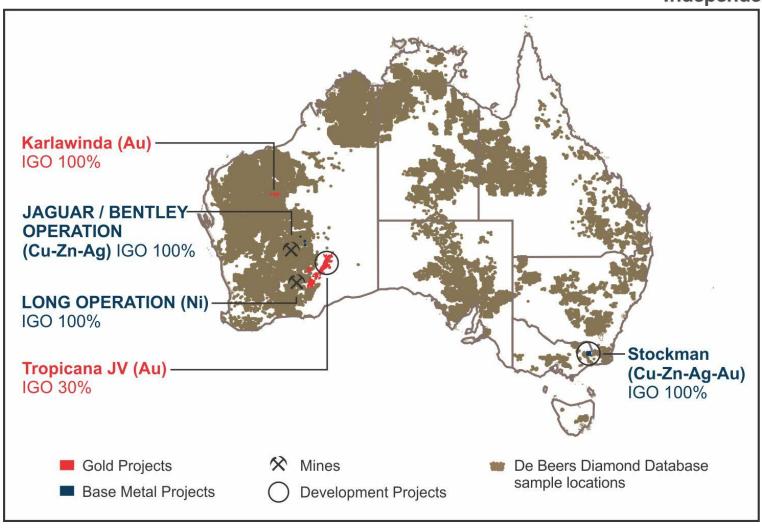
Dividends: Interim dividend (23 Mar 2012) 2c


Final dividend (28 Sep 2012) 1c

Total Dividends Paid to Date 70 cps

IGO ASSET PIPELINE

 Combination of low cost cash flows from current operating mines with significant long-life development projects and highly prospective exploration



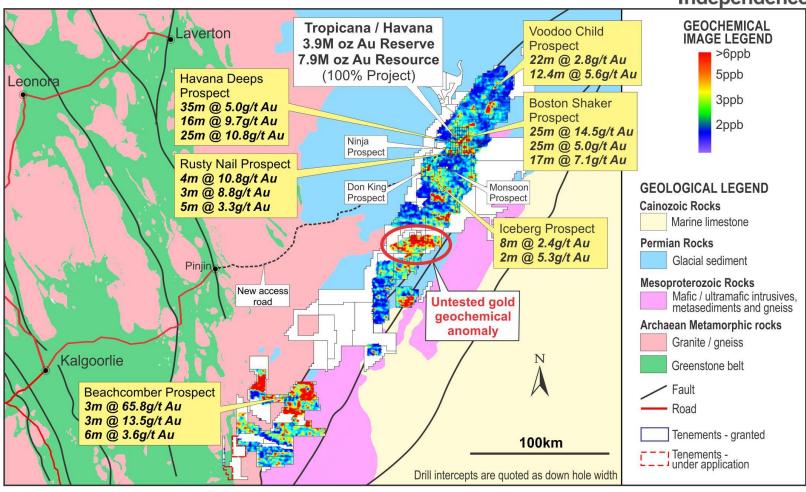
 Highly complementary management and technical capabilities, with proven successful track records of exploration, project management and operations

IGO MAJOR PROJECTS

DEVELOPMENT

IGO 30%, AGA 70%, MANAGER

NEW AUSTRALIAN GOLD PROVINCE UNDER SAND DUNES


Early Stage Pit

IGO 30%, AGA 70%, MANAGER

Independence Group

References: IGO & AGA 4/12/2012 ASX Releases for Tropicana Gold Project Mineral Resource Estimate IGO & AGA 27/7/2011 ASX Releases for Reserve Estimate

Independence Group

IGO 30%, AGA 70%, MANAGER

PROJECT UNDER CONSTRUCTION:

- Project 75% complete at 31st December 2012
- First production estimated December Qtr 2013
- ➤ IGO attributable production years 1-3⁻: 141-147,000 oz Au pa
- > Cash costs years 1-3⁻: A\$590-630/oz Au
- Recent gold price (8/2/2013): A\$1,626/oz
- Resources IGO 30% Share: 2.4M oz Au#
- Reserves IGO 30% Share: 1.2M oz Au*
-and growing
- Combined land position of 13,480sq km

CASA approved Aerodrome

1.5 hour flight time from Perth

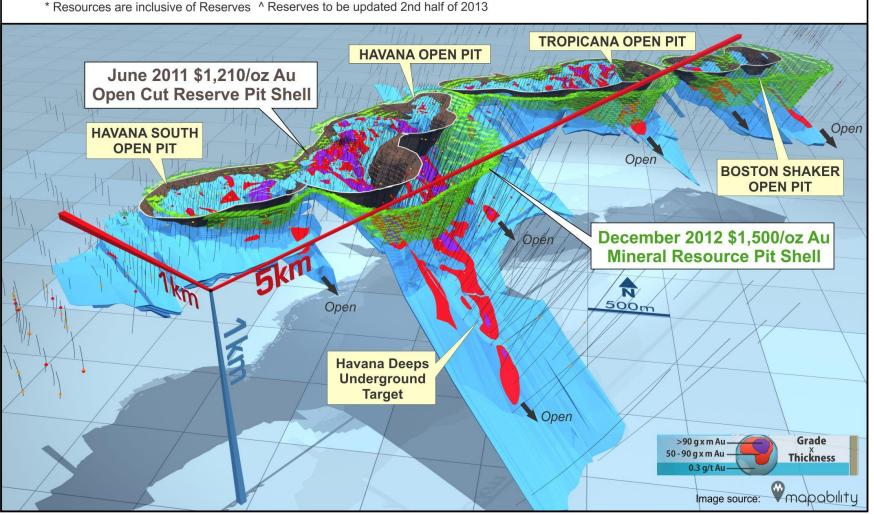
References: ^ IGO 11/11/2010 ASX Releases for Tropicana Gold Project Development Approval (real terms as at 2010)
IGO & AGA 4/12/2012 for ASX Releases for Tropicana Gold Project Mineral Resource Estimate
* IGO & AGA 27/7/2011 ASX Releases for Reserve Estimate

~ AGA 31/1/2013 ASX Release Tropicana Gold Project Update

IGO 30%, AGA 70%, MANAGER

Independence Group

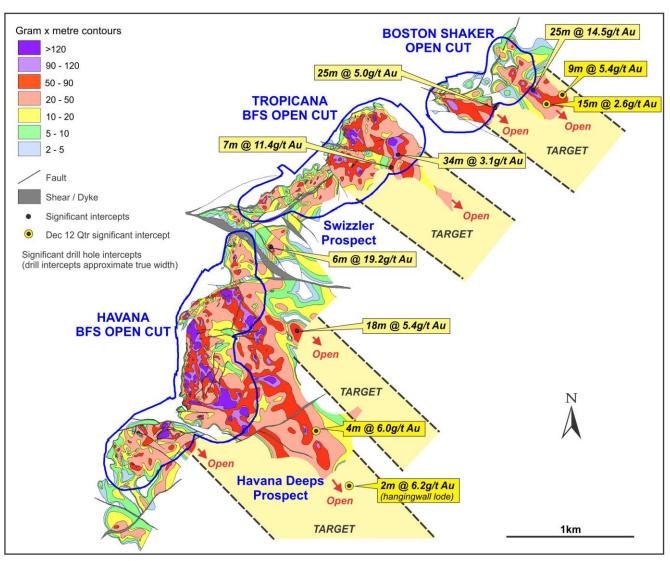
IN 2011 DOMESTIC GOLD PRODUCTION >100Koz



UPSIDE STUDIES & POTENTIAL

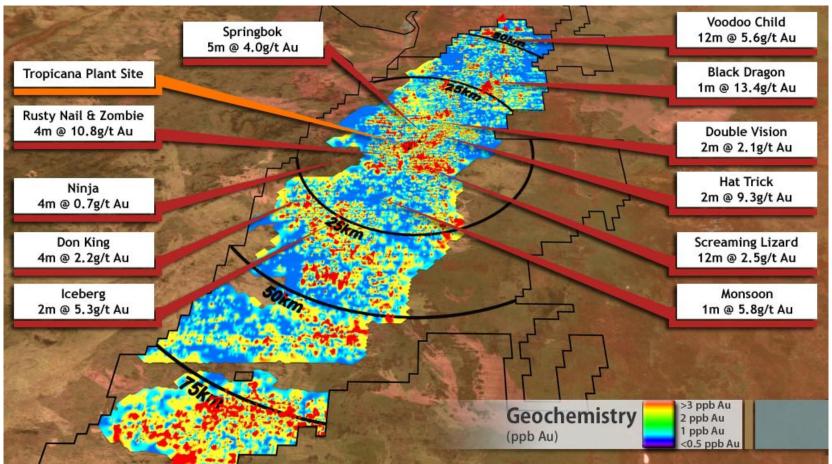
Independence Group

December 2012 Mineral Resource*: 118.0Mt @ 2.1g/t Au - 7.89Moz (A\$1,500/oz) 100% Project -June 2011 Open Pit Reserve^: 56.4Mt @ 2.2g/t Au - 3.91Moz (A\$1,210/oz)



> SIGNIFICANT DOWN PLUNGE POTENTIAL

Independence Group


Drill widths approximate true widths

> SIGNIFICANT REGIONAL POTENTIAL

Independence Group

- > Tenement Area 13,480 km²
- Geochem Coverage over 7,000 km²
- Geochem Based Prospects ~ 60

- Of the 60 Geochem Prospects ~ 32 have been drilled with RC or DD
- Of the 32 Prospects drilled ~14 have drill intercepts > 5g/t Au

FLY THROUGH

Independence Group

Tropicana Gold Mine

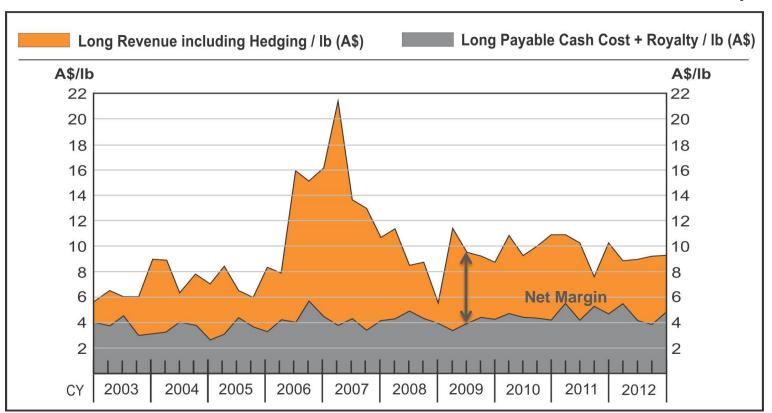
- Record^ Annual 2012 Production 9,995t Ni (2011/12 Guidance 8,800-9,200t Ni).
- > IGO produced over 83,000t Ni since acquisition.
- > June 2012 Ore Reserve 41,900t Ni and Resource 76,600t Ni.
- Exploration success continues to add to Mining Inventory

LONG NICKEL OPERATION	2011/12 ACTUAL	2012/13 GUIDANCE	Sept Qtr 2012	Dec Qtr 2012
Production (Payable Ni Tonnes)	9,995	9,200 – 9,600	2,952	2,645
*Cash Costs (A\$/lb Ni)	\$4.74	\$4.80 - \$5.00	\$3.88	\$4.84
Tonnes	282,177	260,000 – 280,000	76,713	65,770

^{*} Cash Costs are reported based on Payable Metal Including Royalties

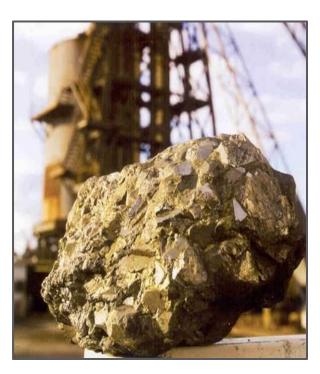
Hedging: FY13 200 Ni tonnes per month @ A\$12.17/lb

References:


IGO 29/8/2012 ASX Release for 2012 Financial Year Full Year Result and Final Dividend IGO 31/10/2012 ASX Release for Quarterly Activities Report to 30 September 2012 IGO 31/01/2013 ASX Release for Quarterly Activities Report to 31 December 2012 IGO 19/10/2012 Annual Report for Long Nickel Mine Mineral Resource and Ore Reserve Statement

[^]Record during the ten years of IGO ownership

► CELEBRATING 10Yrs OF LOW COST NICKEL PRODUCTION Independence Group



- 10 Year Production
- Average Cash Cost + Royalties A\$4.12/lb
- Realised Ni Price A\$10.06/lb

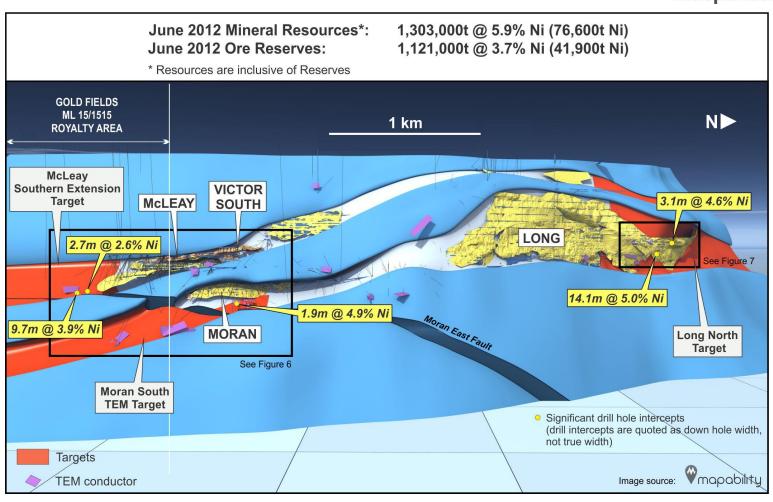
INNOVATIVE RESEARCH AND DEVELOPMENT

Nickel sulphides are very conductive and can be detected using electromagnetic geophysicial technology.

High powered TEM transmitter

exclusive to IGO

- 10 x more powerful than conventional systems.
- Doubles search radius detection up to 200m.
- Cleaner data.
- More accurate targeting.



Down hole TEM probe

- 200m search radius.
- 3D visualisation of massive NiS targets.

Independence Group

DEPOSITS & TARGETS LONGITUDINAL PROJECTION

References:

IGO 19/10/2012 ASX Release: Annual Report for Long Nickel Mine Mineral Resource and Ore Reserve Statement IGO 31/10/2012 ASX Release: Quarterly Activities Report to 30 September 2012

JAGUAR OPERATION (IGO 100%)

PRODUCTION UPDATE & OPERATIONAL IMPROVEMENTS

ZINC-COPPER-SILVER OPERATION	ACTUAL 2011/12	GUIDANCE 2012/13	Sept QTR 2012	Dec QTR 2012
Production (Zn Tonnes)	16,569	27,000 - 28,000	6,668	8,962
Production (Cu Tonnes)	7,257	5,000 - 6,000	1,360	1,207
Production (Ag ozs)	577,726	700,000 - 800,000	194,844	261,645
*Cash Costs (A\$/lb Zn)	\$0.58	\$0.40 - \$0.60	\$0.69	\$0.41

^{*} Cash costs are reported based on payable metal including royalties

References:

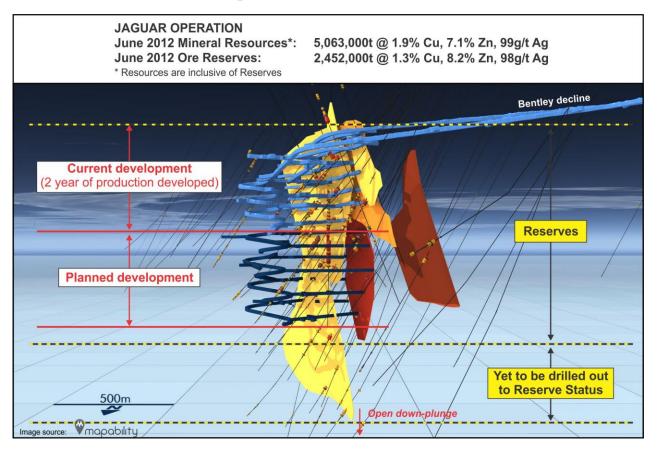
IGO 29/8/2012 ASX Release for 2012 Financial Year Full Year Result and Final Dividend IGO 31/10/2012 ASX Release for Quarterly Activities Report to 30 September 2012 IGO 31/01/2013 ASX Release for Quarterly Activities Report to 31 December 2012

- Switch from contract to owner operator mining
- Senior management changes
- Value creation mentality instilled
- Proactive mining plan adaptive to market conditions
- Operational flexibility 2 years of developed ore at Bentley
- Improved mining fleet reliability
- Reduced power costs at Bentley
- Successfully commissioned HMS plant
- Improved Concentrate Offtake Terms

PRODUCTION UPDATE & OPERATIONAL IMPROVEMENTS

HEAVY MEDIA SEPARATION PLANT

- Removes waste rock from diluted ore and stringer sulphides.
- Increases mill head-grade resulting in reduced processing costs.


- Total tonnes treated 95,108t
- Removed 40,187t of waste from ore feed(42%)
- HMS Cu feed upgraded by 61.2%
- HMS Zn feed upgraded by 62.0% (from 24/4/2012 to 17/11/2012)

BENTLEY DEPOSIT

Independence Group

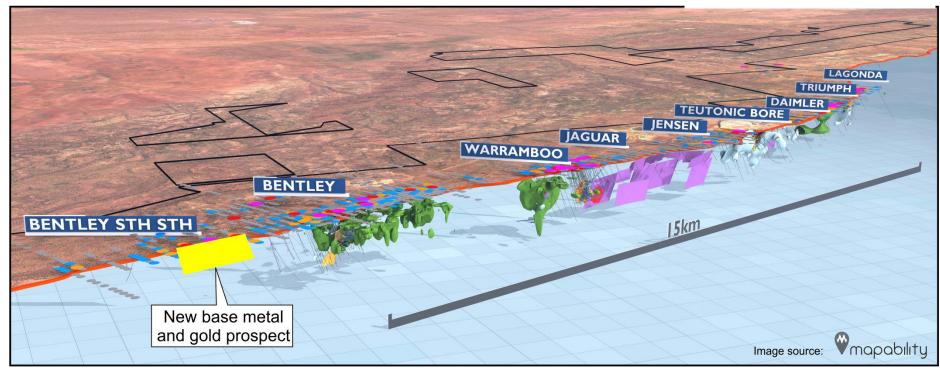
- New high grade mining plan
- 2 years of developed long hole ore (lower cost)

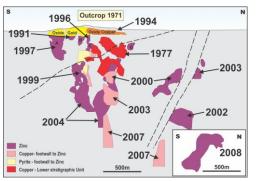
Reference: IGO ASX Release 19/10/2012 for Annual Report: Jaguar/Bentley Operation Mineral Resource and Ore Reserve Statement

BENTLEY DEPOSIT

Discovered – 2008 Development – 2011 First Stoping – Sept Qtr 2012

Bentley - Mineral Resource	Total Tonnes	Cu %	Zn %	Ag g/t	Au g/t
Total Resource	2,914,000	1.9	10.2	134	0.7
Bentley - Contained Metal		Cu t	Zn t	Ag Moz	Au oz
Total Resource		55,600	298,600	12.6	68,000


Reference: IGO ASX Release 19/10/2012 for Annual Report: Jaguar/Bentley Operation Mineral Resource and Ore Reserve Statement


- Early production has yielded a positive reconciliation against Ore Reserve
- +33% ore tonnes, +48% Zn metal, +33% Cu metal (as of 30 Sept 2012 against Ore Reserve)

- Under-explored 50km long prospective Cu-Zn-Ag VMS corridor.
- Independence Group

- High Prospectivity around existing 3 mines.
- Six Cu-Zn-Ag alteration anomalies under-cover being systematically tested.

Golden Grove Gossan Hill: discovery history

Bentley Deposit Scale Comparison


STOCKMAN PROJECT (IGO 100%)

Currawong Deposit

June 2012 Mineral Resources: 10,329,000t @ 2.0% Cu, 4.0% Zn, 40g/t Ag, 1.1g/t Au
January 2013 Ore Reserves: 7,333,000t @ 2.2% Cu, 4.1% Zn, 40g/t Ag, 1.2g/t Au

* Resources are inclusive of Reserves

Wilga Deposit

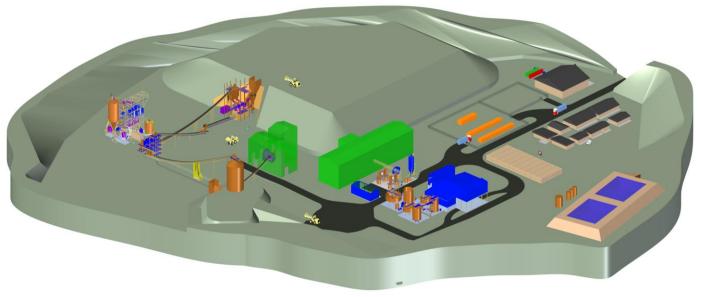
Independence Group

June 2012 Mineral Resources: 3,657,0 January 2013 Ore Reserves: 1,099,0

3,657,000t @ 2.3% Cu, 4.9% Zn, 32g/t Ag, 0.5g/t Au 1,099,000t @ 2.5% Cu, 5.3% Zn, 30g/t Ag, 0.5g/t Au

* Resources are inclusive of Reserves

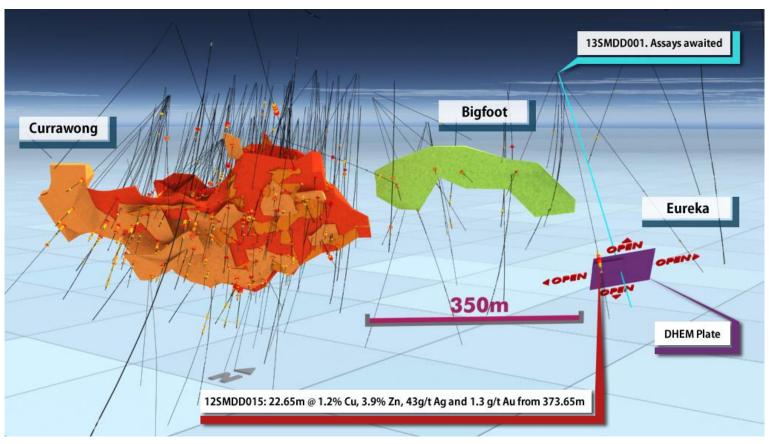
Stockman	Total Tonnes	Cu %	Zn %	Ag g/t	Au g/t
Total Ore Reserve	8,432,000	2.3	4.3	39	1.1
Total Resource	13,986,000	2.1	4.3	38	1.0


Reference: IGO ASX Release 19/10/2012 for Annual Report: Stockman Project Mineral Resource Statement

IGO ASX Release 31/01/2013 for Quarterly Activities Report to 31 December 2012

STOCKMAN PROJECT (IGO 100%)

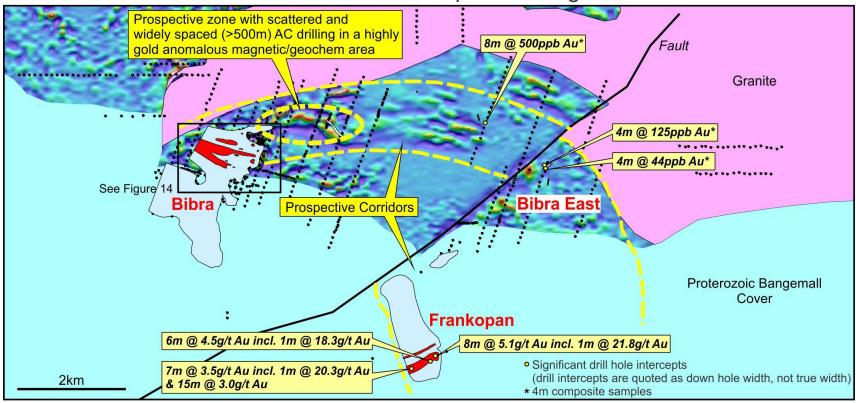
FEASIBILITY STUDY



- Two underground mines Wilga and Currawong
- Feeding a 1Mtpa flotation plant over 9 years
- LOM Payable Metals 144,000t Cu, 229,000t Zn, 4.1Moz Ag & 44,000oz Au
- Recent gold discovery at Bigfoot prospect, 300m north of Currawong deposit, a potential game changer
- Enhanced Feasibility Study underway

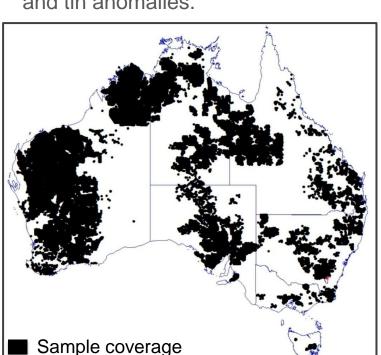
STOCKMAN PROJECT (IGO 100%)

EXPLORATION POTENTIAL


- Near mine high grade "Bigfoot style" mineralisation
- Significant untested potential for VMS and Gold deposits
- Historical 1970s regional exploration never assayed for gold
- IGO high powered TEM system detected New "Eureka" target below Bigfoot

KARLAWINDA GOLD PROJECT (IGO 100%)

Independence Group


BIBRA PROSPECT CROSS-SECTION

- Scoping Study commenced.
- Potential to increase resources down dip and along strike.

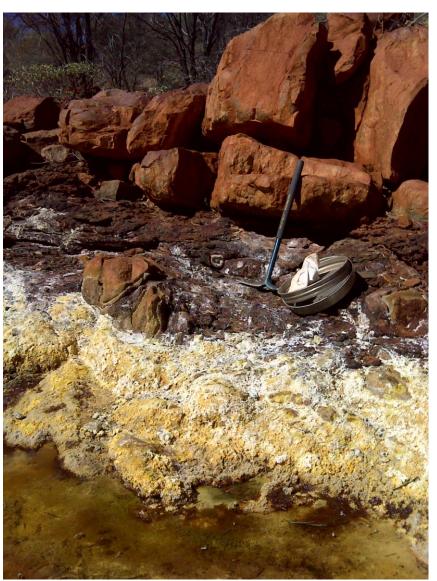
DE BEERS DATABASE (IGO 100%)

- Long term exploration asset to find new Australian mineral camps.
- 293,000 geochemical samples collected by De Beers over 30 years.
- IGO analysing samples for 57 elements including Ni, Cu, Pb, Zn, Au, Ag, Pt, Pd, U, rare earths, Sn, Li, K etc.
- Over 49,000 samples analysed to date generating numerous geochemical anomalies.
- IGO has pegged a number of previously unknown gold, copper, zinc and tin anomalies.

Sample storage

Independence Group

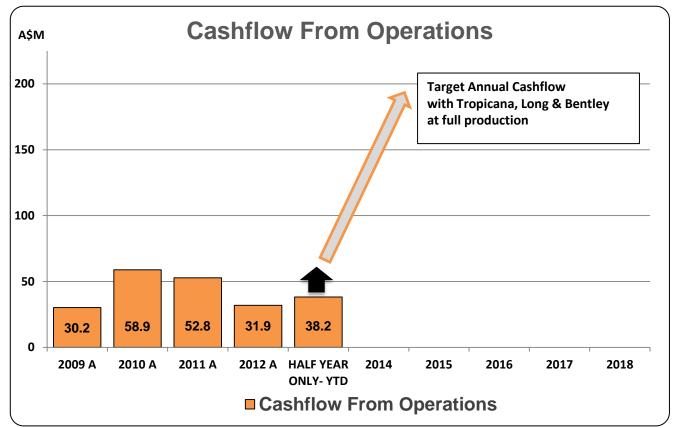
No buy-back or royalties in future mineral discoveries


DE BEERS DATABASE (IGO 100%)

UNLOCKING THE POTENTIAL

- De Beers Targets Under Review
 - 71 Gold Anomalies
 - 33 Base Metal Anomalies
 - 3 Other/Strategic Metal Anomalies

Anomalous base metal and sulphur rich gossan found by Independence Group geologists following upstream from a De Beers stream sediment sample



IGO STRATEGIC OBJECTIVES

➤ Future Target : Sustainable Annual A\$200M Cash flow from Operations

Independence Group

- 3 Operating Mines
 - Tropicana (IGO 30%)
 - Long Nickel Operation (100%)
 - Bentley Base Metal Operation (100%)

- Project Development Pipeline
 - Stockman
 - Karlawinda

- Exploration
 - Near Mine Extensions
 - Brownfields
 - Greenfields

IGO TRANSFORMATION

GROWING A GREAT AUSTRALIAN MINING COMPANY

- Planning for the Next Ten Years
 - Continue and Improve our excellent safety record
 - Target annual sustainable A\$200M Cashflow from Operations
 - Target Low cash costs Long: A\$4.80-5.00lb Ni
 Jaguar: A\$0.30-0.50lb Zn

Tropicana A\$580-630oz Au

- Innovation in mining, metallurgy and exploration
- Find the "Big One"
- New Australian Precious or Base Metal Discoveries
- New High Grade Gold Argentina
- Pay consistent dividends

INDEPENDENCE GROUP

CONTACT DETAILS

Perth Office

Chris Bonwick, Managing Director

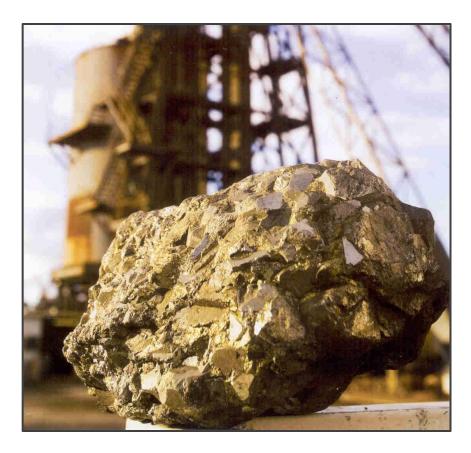
Suite 4, Level 5, South Shore Centre

85 South Perth Esplanade

South Perth, Western Australia, 6151

PO Box 496, South Perth,

Western Australia, 6951


Telephone: +61 8 9238 8300

Facsimile: +61 8 9238 8399

Email: <u>contact@igo.com.au</u>

Website: <u>www.igo.com.au</u>

ASX Code: IGO

APPENDIX RESERVES AND RESOURCES STATEMENTS

Independence Group

LONG	NICKEL (DPERAT	ION						
	Mineral Reso	urces 30 J	une 201	2		Ore Reserv	e 30 June	2012	
	Cu	t-off 1% Ni				at Econ	omic Ni Cut-o	ff	
	Classification	Tonnes	Ni%	Ni Tonnes		Classification	Tonnes	Ni%	Ni Tonnes
LONG	Measured	47,000	3.7	1,700	LONG				
	Indicated	220,000	5.1	11,200		Proven	5,000	3.0	100
	Inferred	167,000	5.1	8,600		Probable	91,000	2.6	2,400
	Total	434,000	5.0	21,500		Total	96,000	2.6	2,500
MORAN	Measured	-	-	-	MORAN				
	Indicated	498,000	7.1	35,300		Proven	-	-	-
	Inferred	11,000	5.3	600		Probable	768,000	4.1	31,700
	Total	509,000	7.0	35,900		Total	768,000	4.1	31,700
VICTOR	Measured	-	-	-	VICTOR				
SOUTH	Indicated	53,000	7.3	3,900	SOUTH	Proven	-	-	-
	Inferred	34,000	1.5	500		Probable	55,000	4.2	2,300
	Total	87,000	5.1	4,400		Total	55,000	4.2	2,300
McLEAY	Measured	49,000	7.2	3,600	McLEAY				
	Indicated	145,000	5.5	7,900		Proven	63,000	2.4	1,500
	Inferred	79,000	4.2	3,300		Probable	139,000	2.8	3,900
	Total	273,000	5.4	14,800		Total	202,000	2.7	5,400
GRAND TO	TAL	1,303,000	5.9	76,600	GRAND TO	TAL	1,121,000	3.7	41,900
Reference:	IGO 19/10/2012 Annu	ıal Report - Long Op	eration Miner	al Resource and Ore	Reserve Statemen	t			

DEVELOPMENT

		ECT JV								
Mineral Res	ources		Ore Reserves							
December	r 2012			June 20	011					
		Contained				Contained				
Tonnes	Grade	Gold		Tonnes	Grade	Gold				
(Mt)	(g/t) ¹	(Moz) ²	Classification	(Mt)	(g/t) ³	(Moz) ⁴				
29.8	2.1	2.03								
76.4	2.0	4.78	Proven	25.8	2.3	1.90				
11.9	2.8	1.08	Probable	30.6	2.0	2.01				
118.0	2.1	7.89	TOTAL	56.4	2.2	3.91				
transported and sapro	olite, 0.4g/t Au for tr	ansitional and fresh m	aterial, 1.73 g/t Au undergrou	nd.						
d Boston Shaker A\$1,5	500/oz Au optimisat	ion.								
transported and uppe	r saprolite, 0.5g/t A	u for lower saprolite, (0.6g/t Au for saprock, 0.7g/t Au	ı fresh ore.						
sation.										
IGO & AGA 4/12/2	012 ASX Release	for Tropicana Gold F	Project Mineral Resource E	stimate						
IGO & AGA 27/7/2	011 ASX Release	for Reserve Estimat	е							
1	Tonnes (Mt) 29.8 76.4 11.9 118.0 transported and saprod Boston Shaker A\$1,5 transported and uppersation.	(Mt) (g/t) ¹ 29.8 2.1 76.4 2.0 11.9 2.8 118.0 2.1 transported and saprolite, 0.4g/t Au for tr d Boston Shaker A\$1,500/oz Au optimisat transported and upper saprolite, 0.5g/t Au sation.	Tonnes Grade Gold (Mt) (g/t) ¹ (Moz) ² 29.8 2.1 2.03 76.4 2.0 4.78 11.9 2.8 1.08 transported and saprolite, 0.4g/t Au for transitional and fresh m d Boston Shaker A\$1,500/oz Au optimisation. transported and upper saprolite, 0.5g/t Au for lower saprolite, 0 sation.	Tonnes Grade Gold (Mt) (g/t) ¹ (Moz) ² Classification 29.8 2.1 2.03 76.4 2.0 4.78 Proven 11.9 2.8 1.08 Probable 118.0 2.1 7.89 TOTAL transported and saprolite, 0.4g/t Au for transitional and fresh material, 1.73 g/t Au undergroud Boston Shaker A\$1,500/oz Au optimisation. transported and upper saprolite, 0.5g/t Au for lower saprolite, 0.6g/t Au for saprock, 0.7g/t Austation.	Contained Tonnes Grade Gold Tonnes (Mt) (g/t) (Moz)² Classification (Mt)	Tonnes Grade Gold Tonnes Grade (Mt) (g/t) (Moz) Classification (Mt) (g/t) (Moz) Classification (Mt) (g/t) (g/t) (Mt) (g/t) (Mt) (g/t) (g/t) (Mt) (g/t) (G/t) (Mt) (g/t) (G/t) (Mt) (g/t) (Mt) (g/t) (G/t) (G/t) (Mt) (g/t) (G/t)				

Independence Group

JAGUAR / BENTLEY OPERATION								JAGU	AR / BEN	ITLEY	OPE	ERAT	ION	
	Mineral Resources 30 June 2012							Ore Reserve 30 June 2012						
	Classification	Tonnes	Cu%	Zn%	Ag g/t	Au g/t			Classification	Tonnes	Cu%	Zn%	Ag g/t	Au g/t
JAGUAR	Measured	429,000	2.5	4.4	61	_		JAGUAR	Proven	73,000	1.9	0.5	15	_
	Indicated	129,000	1.8	2.6	32	-			Probable	6,000	1.5	0.4	10	-
	Inferred	31,000	2.6	2.7	43	-			Total	79,000	1.8	0.4	14	
	Stockpiles	6,000	1.9	3.7	54	-								
	Total	595,000	2.3	3.9	54			BENTLEY	Proven	-	-	-	-	-
									Probable	2,373,000	1.3	8.5	100	0.5
BENTLEY	Measured	-	-	-	-	-			Total	2,373,000	1.3	8.5	100	0.5
	Indicated	2,118,000	1.7	10.5	125	0.7								
	Inferred	795,000	2.5	9.6	160	0.9								
	Stockpiles	1,000	0.8	6.5	66	0.3		GRAND TO	TAL	2,452,000	1.3	8.2	98	-
	Total	2,914,000	1.9	10.2	134	0.7								
		Mineral Res	ources -	August 20	009									
TEUTONIC	Measured	-	-	-	-	-								
BORE	Indicated	946,000	1.7	3.6	65	-								
	Inferred	608,000	1.4	0.7	25	-								
	Total	1,554,000	1.6	2.5	49	-								
GRAND TO	TAL	5,063,000	1.9	7.1	99									
Reference:	IGO 19/10/2012 Ann	ual Report - Jagua	ar/Bentley Op	eration Mine	ral Resource	and Ore Rese	rve Sta	atement						

STOC	KMAN	PROJ	JEC	Τ									
Mineral Resources 30 June 2012								Ore Reserve	31 Decei	mber 2	2012		
	Classification	Tonnes	Cu%	Zn%	Ag g/t	Au g/t		Classification	Tonnes	Cu%	Zn%	Ag g/t	Au g/t
CURRAWONG	Indicated	9,548,000	2.0	4.2	42	1.2		Proven	0	0	0	0	0
	Inferred	781,000	1.4	2.2	23	0.5		Probable	7,333,000	2.2	4.1	40	1.2
	Total	10,329,000	2.0	4.0	40	1.1		Total	7,333,000	2.2	4.1	40	1.2
WILGA	Indicated	2,987,000	2.0	4.8	31	0.5		Proven	0	0.0	0.0	0	0.0
	Inferred	670,000	3.7	5.5	34	0.4		Probable	1,099,000	2.5	5.3	30	0.5
	Total	3,657,000	2.3	4.9	32	0.5		Total	1,099,000	2.5	5.3	30	0.5
GRAND TOTA	AL	13,986,000	2.1	4.3	38	1.0			8,432,000	2.3	4.3	39	1.1
* Inferred Au grades for Wilga													
Reference:	Reference: IGO 19/10/2012 Annual Report -Stockman Project Mineral Resource Statement												
	IGO 31/01/2013 A	SX Release for	Quarte	rly Act	ivities Re	port 20 3	1 D	ecember 2012					

KARLAWINDA GOLD PROJECT : BIBRA DEPOSIT (INFERRED RESOURCES - JUNE 2012)

Mineralisation Type	Tonnes	Au Grade	Contained Au
mineralisation Type	(Mt)	(g/t)	(oz)
Laterite	2.2	1.1	77,100
Upper Saprolite	0.9	1.1	31,000
	4.0	4.4	00.000
Lower Saprolite	1.9	1.1	63,600
Transitional	2.1	1.0	68,200
Sub-total	7.1	1.1	239,900
Fresh	11.4	1.1	434,300
TOTAL INFERRED	18.5	1.1	674,300
Reference: IGO 28/06/2012 ASX Release - Bibra Re		(Au (oz) figures have been rounded to neare	·

CREATING VALUE
THROUGH INNOVATION,
DISCOVERY AND

COMPETENT PERSONS STATEMENTS

Notes:

The information in this summary presentation that relates to Exploration Results is based on information compiled by Mr Christopher M Bonwick who is a full-time employee of the Company and is a member of the Australasian Institute of Mining and Metallurgy. Mr Bonwick has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bonwick consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this summary presentation that relates to Mineral Resources or Ore Reserves is a compilation of previously published data for which Competent Persons consents were obtained. Their consents remain in place for subsequent releases by Independence Group NL of the same information in the same context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. Public releases to the ASX of Mineral Resources or Ore Reserves have been referenced on each slide in this summary presentation, in accordance with clause 5 of the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. These references include the Competent Persons consent for each Mineral Resource or Ore Reserve.